INTRODUCTION

- Consumption of energy has increased; people have pivoted their focus on those unconventional resources, such as hydrocarbon productions from stimulated reservoirs.
- Tight oil reservoirs are responsible for over 50% daily oil production in the U.S.
- It is critical to evaluate the performance of hydraulic fracture (HF) in the early stage of the well.
- Straight-line flowback analysis is applied in this project, and one shale oil and one shale gas well are tested.

OBJECTIVES

- To obtain interested hydraulic fracture properties, such as initial fracture volume \(V_{f1} \) and initial fracture permeability \(k_{f1} \).
- To test out the validation of the given semi-analytical approach with completed model.

RESULTS

- **Shale Oil Well:**
 - \(V_f = 151.64 \, Mcf \)
 - \(k_f = 1866 \, md \)
 - \(\gamma_f = 1.0 \times 10^{-4} \, psi^{-1} \)

- **Shale Gas Well:**
 - \(V_f = 195.66 \, Mcf \)
 - \(k_f = 863 \, md \)
 - \(\gamma_f = 7.5 \times 10^{-4} \, psi^{-1} \)

CONCLUSIONS

- Estimated HF properties of oil and gas shale wells using flowback data, which are available shortly after HF stimulation.
- Estimated HF permeability has less accuracy than estimated HF volume due to higher uncertainty associated with the determination of the intercept from straight-line analysis.
- Future study will consider reconciliation of the long-term production data with the present flowback data analysis.
- Future study will consider three-phase flowback and production data analysis of shale wells.

REFERENCES

ACKNOWLEDGEMENTS

This research was supported through the Summer Research Program organized by John and Willie Leone Family Department of Energy and Mineral Engineering.