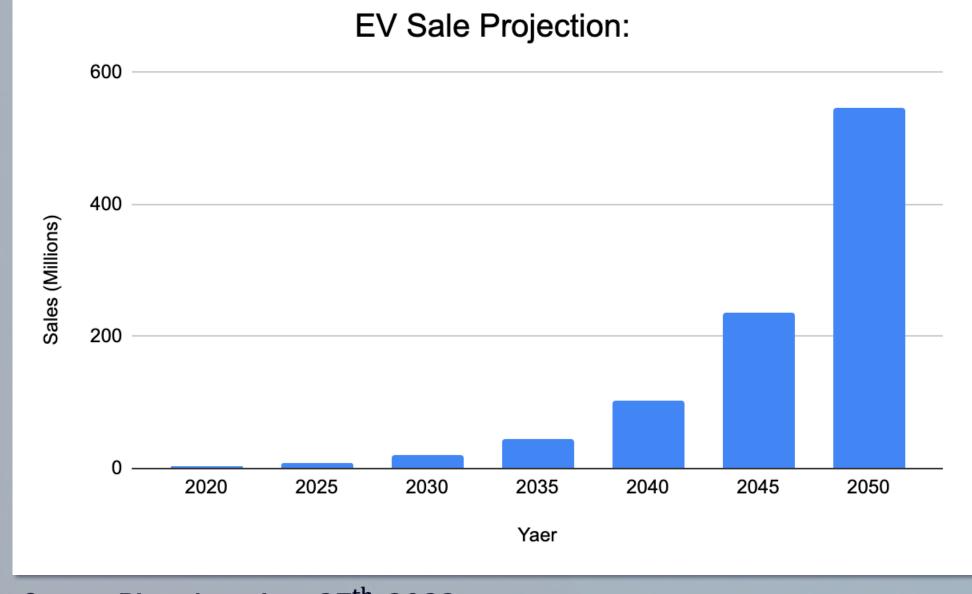
# Projected Electric Vehicle REE and CM Demands Versus Global Mined Supplies Felix Rosado Dr. Vander Wal

### Introduction

- **With the recent increase in our technology.** More than ever, car manufacturers are changing to electric.
- **With this increase in demand for electric vehicles, their motors and** batteries could become more expensive to make due to the need for Rare Earth Elements.
- **Rare earth elements (REE) are a group of 15 referred to as the** lanthanide's series in the periodic table.
- **Most notably of the 15 to the electric car industry are, Dysprosium and** Neodymium.
- The demand for those key elements is increasing due to the rare earth consumption for electric traction motors and critical minerals for Li-ion batteries in EVs.



- □ There are 3 main classifications of elcetic veihicles. Fully Elecric (BEV), Hybrid (HEV), and Plug-in Hybrid (PHEV).
- Nearly all BEV's use traction motors based on rare earth permanent magnet, NdFeB.


### **Research Question**

 How does the available mined REE and CM compare to projected demand by electric vehicle demand represented by traction motors based on rare-earth permanent magnets and Li-ion batteries reliant upon several critical minerals?

### Method

- Identify Material Intensities for EV traction motors and batteries
- **Estimate EV adoption rates**
- **Calculate projected REE and CM requirements**
- **Compare REE and CM demand to mined global production levels**

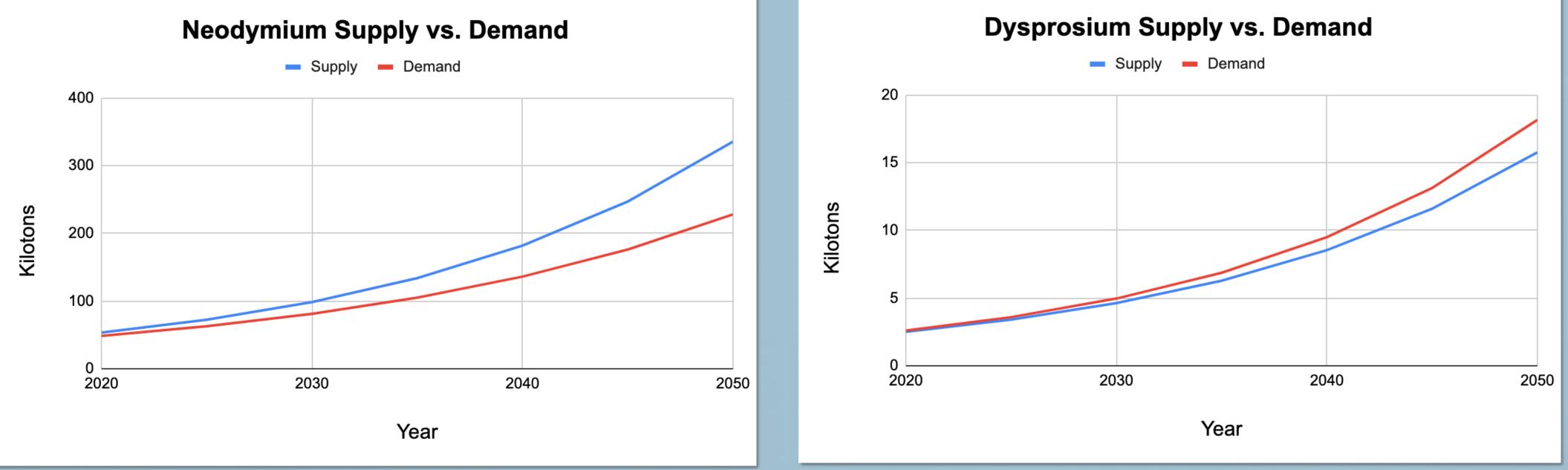
### Figure 1: Global EV sale projection through 2020 - 2050



Source: Bloomberg, june 27<sup>th</sup>, 2022

# Results

Table 1: Material Intesities for average Li-Ion battery, Plug-in Hybrid, and Battery Electric Car


| Element               | Battery | PHEV*  | BEV* |  |  |  |  |
|-----------------------|---------|--------|------|--|--|--|--|
| REE's (g)             |         |        |      |  |  |  |  |
| Dysprosium            | -       | 165.72 | 2    |  |  |  |  |
| Neodymium             | -       | 552.79 |      |  |  |  |  |
| Critical Minerals(kg) |         |        |      |  |  |  |  |
| Nickel                | 20.4    | 17.8   |      |  |  |  |  |
| Cobalt                | 20.4    | 2.6    |      |  |  |  |  |
| Lithium               | 7.5     | 2.1    |      |  |  |  |  |
| Manganese             | 31.2    | 2.1    |      |  |  |  |  |

\*Includes traction motors and all other auxilary motors, ex power streering, power seats, etc.

 Table 2: Supply and demand of Critical Minerals for Li-ion Batteries

| Lithium (kt) |        |        | Nickel (kt) |        |        |   |
|--------------|--------|--------|-------------|--------|--------|---|
| Year         | Supply | Demand | %           | Supply | Demand | % |
| 2020         | 83     | 29     | 35          | 2,510  | 196    |   |
| 2025         | 262    | 79     | 30          | 3,889  | 537    |   |
| 2030         | 685    | 181    | 26          | 5,601  | 1,234  |   |
| 2035         | 1,791  | 418    | 23          | 8,067  | 2,853  |   |
| 2040         | 4,687  | 964    | 21          | 11,619 | 6,575  |   |
| 2045         | 12,265 | 2,224  | 18          | 16,735 | 15,172 |   |
| 2050         | 32,091 | 5,135  | 16          | 24,103 | 35,039 |   |

Percentage is calculated as ratio of projected demand relative to supply





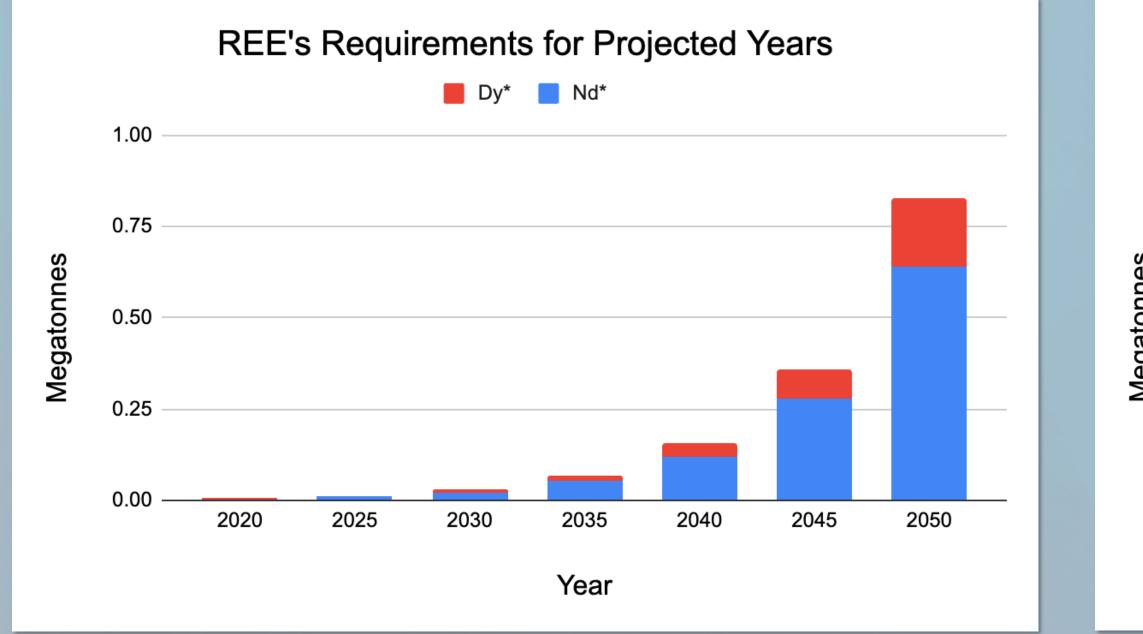
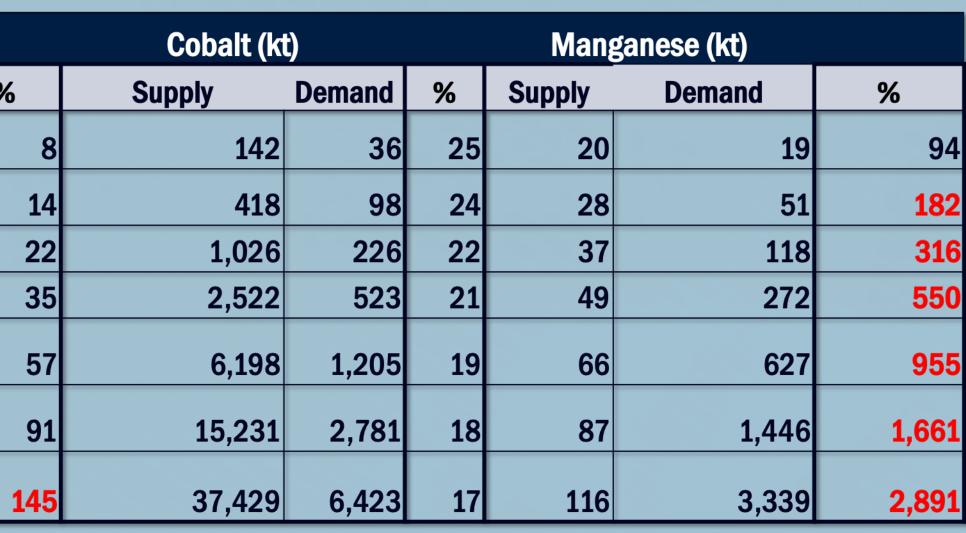



Figure 4: Projected Rare Element Requiremnts for 2020 - 2050

224.63 749.3 58.3 10.6 8.5 5.5


□ A CAGR was used to determine an annual growth rate based on documented previous years for specific REE's, such as Dysposium and Neodymium, to project future demand.

$$V_f = V_i (CAGR + 1)^2$$

Where  $V_f$  is is final value,  $V_i$  is the initial value, and n is the period that has elapsed.

□ The demand was calculated by implementing the CAGR for

EV sales, and EV material intensities.





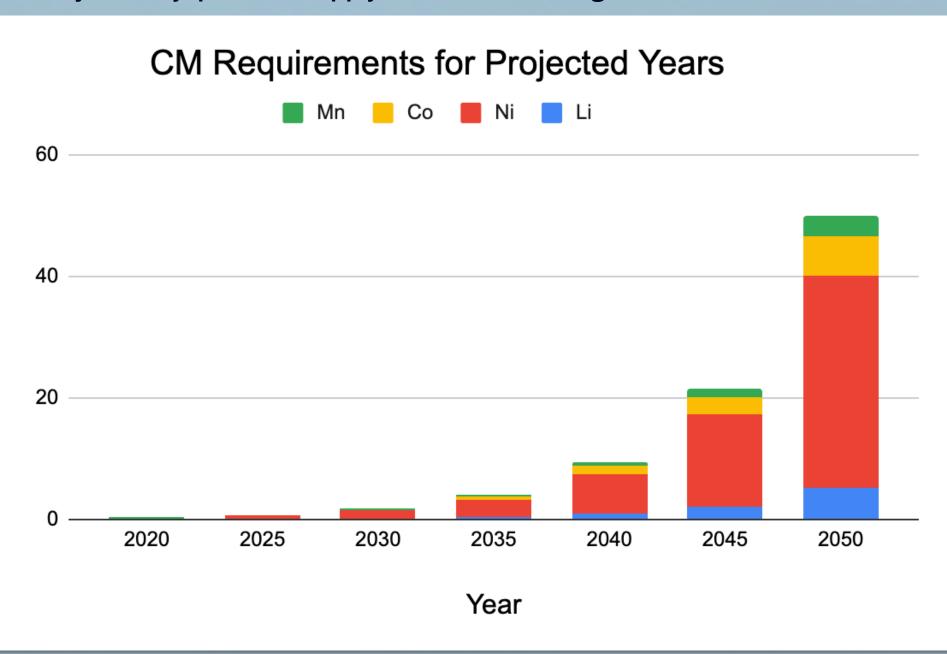



Figure 5: Projected Critical Mineral Requiremnts for 202 - 2050

| <ul> <li>demand</li> <li>Even w</li> <li>NEF), th</li> <li>A short</li> <li>Shortfa</li> <li>dramat</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The and and and and and and and and and and</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Adams Internet Control of the second secon</li></ul> |
| Support acknow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Po Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### Conclusions

Traction motors based on NdFeB magnets will impose a substantial d upon projected Dy production, but not Nd in coming years. with an aggressive EV adoption rate of 18.2 % (based on Bloomberg he Li supply appears adequate for the Li-ion batteries.

tfall of Ni is projected in 2045.

alls of Mn are projected starting already in 2025, becoming tically larger by 2050.

## **Broader Implications**

e annual demand for global REEs reached 240,000t in 2021 d is projected to reach 315,000t in 2030.

2021, China accounted for 85% of the global supply of refined Es, followed by the rest of Asia at 13% and Europe at 2%, cording to Roskill.

ina has a more than 90% share of the global production of wnstream rare earth products and technologies, including gnets.

amas Intelligence forecasts that the value of global magnet rare rth oxide consumption will triple from \$15.1bn in 2022 to 6.2bn by 2035.

e United States was 100 percent import dependent for 17 nerals, and over 50 percent reliant for another 30 minerals in 21. The value of non-fuel minerals produced in the United ates in 2021 was an estimated \$90.4 billion, with domestically ocessed mineral materials worth an estimated \$820 billion. In n, these materials were used by downstream industries to ntribute roughly \$3.32 trillion to the U.S. economy.

### References

telligence. (2018). Spotlight on Dysprosium: Revving Up for Rising Demand. . (2022, February 29). Projected global electric motorcycle market size between 2020 and

n, T., Myers, R. J., Rios, O., & Graedel, T. E. (2018, January 25). *Implications of emerging* chnologies on rare earth supply and demand in the United States. MDPI. les and sales market share of electric cars, 2010-2021 – Charts – Data & statistics. (n.d.).

emans, K., Jones, P. T., Müller, T., & Yurramendi, L. (2018, February 9). *Rare earths and nce problem: How to deal with changing markets?* SpringerLink.

abrielle G.Gaustad4XinkaiFu1, E., Ceder, G., Gabrielle, G., & Gaustad, G. (2017, October ium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical cience Direct.

r, B., Diago, I., Spekkink, W., Vos, M., Kleijn, R., Murakami, S., & Kramer, G. J. (2017). icators for the quantification of resilience in critical material supply chains, with a 2010 crisis case study.

021, January). Mineral Commodity Summaries.

Li, Z., & Chen, C. (2017). Global potential of rare earth resources and rare earth demand n technologies. *Minerals*, 7(11), 203.

## **Acknowledgements**

ort through the EME Summer Internship Program is gratefully wledged.

ennState College of Earth and Mineral Sciences John and Willie Leone Family Department of Energy and Mineral Engineering