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4 ABSTRACT N ([ MATERIALS AND METHOD N CONCLUSION h
“*Energy demand fluctuations can be met by large-scale Stochastic model: Stochastic model is an approach used for estimating probability distributions of potential outcomes which % Utilizing salt caverns hydrogen storage increases the
underground energy storage and through maximizing the are characterized by a randomizing one or more variables/inputs over time. Capacity Factor of the 1-GW hypothetical wind project
possibilities of integrated electricity generation system GAMS (General Algebraic Modeling System): GAMS is an advanced modeling system for mathematical programming and without reducing the power output of the system.
from intermittent wind power [1][2]. optimization problems. GAMS modeling language allows the integration of real-world optimization problems into computer “ Since wind pattern can sometimes be unpredictable
¢ This project analyzes the economic feasibility of power- code for concise and instantaneous formulation. (there is more wind at non-peak hours), being able to

to-gas using electrolysis technologies in a 1-GW
nameplate capacity wind project (500 2-MW wind
turbines) and the economic benefits of utilizing salt
caverns as underground energy (hydrogen) storage for
controlled dispatch.

“*We develop a stochastic model using GAMS to calculate

Without storage, wind energy creates Hydrogen storage allows for large-scale wind deployment, as ?acﬁlgg 5/77‘;"27 i;’jg;g;;i:/‘/’:riz L’ZI?;CC'{SC“’; iilezss Zélclro eo?AS/ZgoCpra;t{ty utilize this Cheap energy that remains unused for
/ ly/d d mi h be stored and dispatched t tch d d ’ . .
natural supply/demand mismatches power excess can be stored and dispatched to match deman eleCtrOlyS]S processes (tO produce Hydrogen o T

dispatch) can provide a huge boost in the project
0257 revenue [5].

»* On the other hand, areas where demand exceeds supply
can be managed by conventional power plants such as

Capacity factor:

PJM market region supply and demand curve 2021 Supply - Demand Increased Capacity Factor
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different financial parameters (NPV, IRR, B/C ratio) for : N\ N coal, natural gas, nuclear [5].
economic feasibility analysis of 1056 scenarios with ten R VRV \/ 05 | < Nevertheless, if the costs of producing Hydrogen gas
variables including: cavern installation costs, cost of . using renewable energy resources (fixed O&M,
. . . . . . v
electrolysis, hydrogen distribution costs, transmission o | ) - - y production variable, production and CSD costs) can be
costs, production tax credit, and efficiency (with B e e e e B improved in the nearest future, the benefits of storing
sensitivity analysis). —2013Demand | —lan2021sup  —Feb202iSup  —March 2021 Sup - - Hydrogen for future dispatch will be improved
< We find that the median increased capacity factor for PJIM metered load data Increased capacity factor 4-years period sample (3 months /year) tremendously [4].
this 1-GW hypothetical wind project with the installation Equations and financial inputs: — < Due to the intermittent nature of wind power and
of salt caverns as hydrogen storage is approximately CC (S) = Transmission + Wind Turbine + Electrolyzer + Compressor + 1.1 * H2production(S) * Storage “?Zf" Un:s L;’ H;?h renewable resources in generalj Fhe abih:ty tO. couple
0.243. Ve (5) = Electrolysis + CSD + St + Maint ot Electrolysis $ kg H2 o 3 large-scale energy storages efficiently with wind
= B orage + Maintenance LoSts S T turbines will be an excellent feature to help levelin
OBIJECTIVES H2 conversionfactor * Energy produced * Ef ficiency * 1000 * StorageOpt E;:ngy $'[‘f;'“f " ,;55 02 '-:-54 P S

H2production(S) = renewable energy with most conventional power plants

Electrolysis energy Transmission $ MM 370 520

¢+ To develop a stochastic model that analyzes multiple et S e 13 o % B Fic o, H2production(s) | Ei:g:::zizf g % 2200 [5].
scenarios with different financial variables to study the actrtieily SeliesB) = Energy produaen & B fuaieney = Wadensity < S Bleeirieiy prte Compressor $MM 185 1208 REFERENCES
economic feasibility of coupling salt cavern hydrogen Income (S) = Electricity Sales (S)- VC (S) + PTC (S)- Tax(S) StoiE;?E[S] sikotz EES [1] A. Ozarslan, “Large-scale hydrogen energy storage in
. . . No Storage : 4
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