
Hydrogen is a versatile energy carrier for tackling critical energy challenges and
enabling deep decarbonization across various difficult-to-abate sectors, such as steel,
chemicals,shipping, long-haul transport, and aviation.

INTRODUCTION

Mechanism of Hydrogen Evolution Reaction

RESULTS & CONCLUSIONS

• Inverse-spinel violarite Bulk structure Fig.2(a) (Lattice parameter-a; DFT: a= 9.33 Aº, 
Experimental: a= 9.46 Aº)

• Surface Characterization: Three most stable are (001), (011), and (111) surfaces with 
surface energies of  0.84, 1.50, and 1.19 Jm-2, respectively.

• Further investigations include the water dissociation, transition state structures, energy 
barriers, charge transfers, and vibrational frequencies. 
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HER requires High Overpotential (Energy Barrier)
• Noble & non-noble metal-based catalysts
• Platinum (Pt) is current state-of-the-art catalyst
Pt is Scarce & Expensive
• The kinetically efficient electrocatalysts

composed of earth-abundant elements such as
Fe, Ni, Co and S that possess active sites, high
conductivity, stability, and cost-effective
fabrication are necessary to produce hydrogen
in the terawatt scale.

PROBLEM STATEMENT

(c) [NiFe] hydrogenase (d) Violarite (FeNi2S4) (e) Greigite (Fe3S4)

(b) Active sites ([Fe-Ni])-3S] and [4Fe4S] clusters(a) Hydrogenase enzyme

• Water electrolysis powered by
renewable energy sources (e.g., solar
and wind) produce “green” hydrogen
with no greenhouse gas (GHG)
emissions.

• Water electrolysis comprises two
heterogeneous reactions: hydrogen
evolution reaction (HER) and oxygen
evolution reaction (OER).

• The kinetically sluggish two-electron-
transfer HER and four-proton-electron-
coupled OER requires high
overpotentials, which dramatically lower
the performance of water electrolyzers,
leading to increase electricity demands
and costly hydrogen production.

Electrocatalytic water splitting
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• Natural enzymes like [FeNi]- and
[FeFe]-hydrogenase, with Ni- and Fe-
sulfide active sites can catalyze the
H+/H2 interconversion with
remarkable efficiency.

• Hydrogenases offer fascinating
blueprints for designing novel earth-
abundant Fe-Ni sulfides-based
electrocatalysts for green hydrogen.

• Fe-Ni sulfide minerals such as
violarite (FeNi2S4) exhibit high
electronic conductivities and feature
structural Fe- and Ni-centers
bridged by sulfur, resembling
primary active sites of natural
enzymes

Research Streamline

MATERIALS & METHODS

First-principles based density functional theory (DFT) methodology

i. Atomic-level understanding of the effect of size and composition on the surface
structures, stabilities,and crystal morphologies of the Fe-Ni-sulfide nanoparticles;

ii. Calculation of the redox properties of the Fe-Ni-sulfide surfaces, including the effect
of surface enrichment by dopant metal impurities;

iii. Investigation of H2O adsorption and dissociation at the different sites on the Fe-Ni-
sulfide surfaces;

iv. Characterization of the electronic properties (density of states, d-band centers,
charge transfers, etc.) to provide mechanistic insights into the reaction mechanisms
from H2O to H and OH intermediates and to H2 product.
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