Theory-Guided Design and Optimization of Bio-Inspired Iron-Nickel Sulfide Electrocatalysts for Green Hydrogen Production

Nikhil Komalla¹, Nelson Y. Dzade¹

¹John and Willie Leone Family Department of Energy & Mineral Engineering, The Pennsylvania State University

INTRODUCTION

Hydrogen is a versatile energy carrier for tackling critical energy challenges and enabling deep decarbonization across various difficult-to-abate sectors, such as steel, chemicals, shipping, long-haul transport, and aviation.

Electrocatalytic water splitting

 Water electrolvsis powered by renewable energy sources (e.g., solar and wind) produce "green" hydrogen with no greenhouse gas (GHG) emissions

Water electrolysis comprises two heterogeneous reactions: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER).

The kinetically sluggish two-electrontransfer HER and four-proton-electroncoupled OER requires high overpotentials, which dramatically lower the performance of water electrolyzers, leading to increase electricity demands and costly hydrogen production.

Mechanism of Hydrogen Evolution Reaction

PROBLEM STATEMENT

The

in the terawatt scale **MATERIALS & METHODS**

Natural enzymes like [FeNi]- and (a) [FeFe]-hydrogenase, with Ni- and Fesulfide active sites can catalyze the H^+/H_{o} interconversion with remarkable efficiency Hydrogenases offer fascinating blueprints for designing novel earthabundant Fe-Ni sulfides-based electrocatalysts for green hydrogen. Fe-Ni sulfide minerals such as violarite (FeNi₂S₄) exhibit high electronic conductivities and feature structural Fe- and Ni-centers

enzymes

Noble & non-noble metal-based catalysts

Platinum (Pt) is current state-of-the-art catalyst

Fe, Ni, Co and S that possess active sites, high

conductivity, stability, and cost-effective

fabrication are necessary to produce hydrogen

kinetically efficient electrocatalysts composed of earth-abundant elements such as

(b) Active sites ([Ee.Nil]).351 and [AEeAS] cluster

bridged by sulfur, resembling (c) [NiFe] hydr primary active sites of natural Fig. 1 Schematic for bio-inspired novel earth-abundant Fe-Ni s-based electrocatalyst

First-principles based density functional theory (DFT) methodology

- Atomic-level understanding of the effect of size and composition on the surface structures, stabilities, and crystal morphologies of the Fe-Ni-sulfide nanoparticles;
- Calculation of the redox properties of the Fe-Ni-sulfide surfaces, including the effect of surface enrichment by dopant metal impurities;
- iii. Investigation of H₂O adsorption and dissociation at the different sites on the Fe-Nisulfide surfaces:
- Characterization of the electronic properties (density of states, d-band centers, charge transfers, etc.) to provide mechanistic insights into the reaction mechanisms from H₂O to H and OH intermediates and to H₂ product.

RESULTS & CONCLUSIONS

Fig. 2 Preliminary results: (a) structure and (b) PDOS of bulk FeNi₂S₄. Optimized H₂O adsorption geo FeNi S (001) at (c) Fe and (d) Ni-site

- Inverse-spinel violarite Bulk structure Fig.2(a) (Lattice parameter-a; DFT: a= 9.33 A°, Experimental: a= 9.46 A°)
- Surface Characterization: Three most stable are (001), (011), and (111) surfaces with surface energies of 0.84, 1.50, and 1.19 Jm⁻², respectively.
- Further investigations include the water dissociation, transition state structures, energy barriers, charge transfers, and vibrational frequencies.

REFERENCES

	Canaguier, S., Artero, V. & Fontecave, M. Modelling NiFe hydrogenases: Nickel-based electrocatalysts for hydrogen production. Dalton Transactions 315–325 (2008) doi: 10.1030/h07135873	14.	Posada-Pérez, S. et al. CO2 interaction with violarite (FeNi254) surfaces: A dispersion- corrected DFT study. Physical Chemistry Chemical Physics 20, 20439–20446 (2018).
2.	Vincent, K. A., Parkin, A. & Armstrong, F. A. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107, 4368–4413 (2007).	15.	Qiu, S., Li, Q., Xu, Y., Shen, S. & Sun, C. Learning from nature: Understanding hydrogenase enzyme using computational approach. Wiley Interdisciplinary Reviews: Computational Molecular Science on 10 Preprint at https://doi.org/10.1002/arema.1422.(2020)
з.	Pershad, H. R. et al. Catalytic electron transport in Chromatium vinosum [NiFe]- hydrogenase: Application of voltammetry in detecting redox-active centers and establishing that hydrogen concidation is very fast even at potentials close to the reversible H+/H2 value. Biochemistry 38,8982-8999 (1999).	16.	Su, H. et al. Recent progress on design and applications of transition metal chalogenide- associated electrocatalysts for the overall water splitting. Chinese Journal of Catalysis wol. 447-48 Preprint at https://doi.org/10.1016/S1872-2087(23)84189-4 (2023).
4.	Amaro-Gahete, J. et al. Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coordination Chemistry Reviews vol. 448 Preprint at https://doi.org/10.1016/j.cer.2021.214172 (2021).	17.	Wang, M., Zhang, L., He, Y. & Zhu, H. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A
5.	Stephenson, M. & Stickland, L. H. Hydrogenase: a bacterial enzyme activating molecular hydrogen Biochemical Journal 25 205-214 (1831)		vol. 9 5320-5363 Preprint at https://doi.org/10.1039/d0ta12152e (2021).
6.	Lebrun, F. Nearby Molecular Hydrogen. International Astronomical Union Colloquium 81,	10.	evolution. J Am Chem Soc 139, 13604–13607 (2017).
7.	216-219 (1959). Ahmed, M. E. & Dey, A. Recent developments in bioinspired modelling of [NiFe]- and [FeFe]-hydrogenases. Current Opinion in Electrochemistry vol. 15 155-164 Preprint at https://doi.org/10.1016/j.coelec.2018.05.009 (2019).	19.	Yang, Y. et al. Heterogeneous NI352@FeNI254@NF nanosheet arrays directly used as high efficiency bifunctional electrocatalyst for water decomposition. J Colloid Interface Sci 599, 300–312 (2021).
8.	Ibn Shamsah, S. M. Earth-abundant electrocatalysts for water splitting: Current and future directions. Catalysts vol. 11 Preprint at https://doi.org/10.3390/catal11040429 (2021).	20.	Wu, Y. et al. Operando capturing of surface self-reconstruction of Ni352/FeNi254 hybrid nanosheet array for overall water splitting. Chemical Engineering Journal 427, (2022).
9.	Sun, L., Duboc, C. & Bhen, K. Bioinspired Molecular Electrocatalysis for H2Production: Chemical Strategies. ACS Catal 12, 9189–9170 (2022), Zahran, Z. N., Mohamed, E. A. & Naruta, Y. Bio-inspired colacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings. Sci Rep 6, 1– 12 (2016).	21.	Maheskumar, V., Saravanakumar, K., Yea, Y., Yoon, Y. & Park, C. M. Construction of heterostructure interface with FeNi254 and CoFe nanowires as an efficient bifunctional electrocatalyst for overall water splitting and urea electrolysis. Int J Hydrogen Energy 48, 5030–5054 (2023).
10.	Parkin, A., Seravalli, J., Vincent, K. A., Ragidale, S. W. & Armstrong, F. A. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J. Am Chem Soc 129, 10338–10339 (2007).	22.	Yamaguchi, A. et al. Electrochemical CO2 reduction by Ni-containing iron sulfides: How is CO2 electrochemically reduced at bisulfide-bearing deep-sea hydrothermal precipitates? Electrochim Acta 141.317–318 (2014).
11.	Hansen, H. A., Varley, J. B., Peterson, A. A. & Nerskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. Journal of Physical Chemistry Letters 4, 388-392 (2013).	23.	Piontek, S. et al. Bio-inspired design: Bulk iron-nickel sulfide allows for efficient solvent- dependent CO2 reduction. Chem Sci 10, 1078–1081 (2019).
12.	Möller, F., Piontek, S., Miller, R. G. & Apfel, U. P. From Enzymes to Functional Materials- Towards Activation of Small Molecules. Chemistry - A European Journal 24, 1471-1483 (2018).	24.	Jiang, J. et al. Nanostructured metallic FeNi254 with reconstruction to generate FeNi- based oxide as a highly-efficient oxygen evolution electrocatalyst. Nano Energy 81, (2021).
			Haider, S., Roldan, A. & De Leeuw, N. H. Catalytic dissociation of water on the (001), (011),
13.	Arrigoni, F. et al. Catalytic H2avolution/oxidation in [FeFe]-hydrogenase biomimetics: Account from DFT on the interplay of related issues and proposed solutions. New Journal of Chemistry 44, 17696–17615 (2020).	25.	and (111) surfaces of violarite, FeNi2S4: A DFT-D2 study. Journal of Physical Chemistry C 118, 1958-1967 (2014).
13.	Arrigon, F et al. Catalytic Bidewidston/ordificion in [Fu9]-lydrogenase biomimetics: Account from UPT on the interplay of related assess and proposed solutions. New Journal of Chamatry 44, 17896–17815 (2020). ACKENOWL	E	and (111) surfaces of violarite, FeNi254: A DFT-D2 study, Journal of Physical Chemistry C 118, 1968–1967 (2014). DGMENT

I also acknowledge the John and Willie Leone Family Department of Energy & Mineral Engineering for graduate assistantship, the Institute of Computational and Data Sciences for providing the computational resources; and to The Pennsylvania State University for providing me with the opportunity.

John and Willie Leone Family Department of Energy and Mineral Engineering