Hydrogen Mixing Dynamics during Underground Storage in Depleted Gas Reservoirs Dexuan Li (dvl5776@psu.edu), Hamid Emami-Meybodi (emami@psu.edu)

(Heinemann et al, 2021, Energy and Environmental Science)

OBJECTIVES

✤ H₂ mixing with in-situ gas and cushion gas can be influenced by:

- In-situ gas amount
- Cushion gas amount
- > Hydrodynamic dispersion (HD)
- > Formation Geometry

ww.PosterPresentations.com

Investigating the H₂ mixing dynamics and the impacts of the influencing factors on produced H_2 purity and recovery factor (RF) using numerical simulation

METHODS

Conceptual Model & Assumptions

- Single gas phase \checkmark
- Impermeable boundary \checkmark
- No chemical and microbial activities \checkmark
- Isothermal condition

Governing Equations

Mass conservation for chemical species

$$\phi \rho \frac{\partial(\omega_i)}{\partial t} + \rho(\boldsymbol{u} \cdot \nabla) \omega_i + \nabla \cdot \boldsymbol{j}_i = R_m$$

- \checkmark 4 cyclic injections (4 months) and withdrawal (8 months)
- ✓ 3-months prolonged withdrawal

In-situ Gas & Cushion Gas Amount

> Hydrodynamic Dispersion (HD)

Formation Geometry

CONCLUSIONS

We conducted numerical simulations to investigate several influencing factors and H_2 mixing dynamics during UHS:

- Under the same molar composition, insitu gas (CH_4) can provide a slightly better H_2 RF (0.5 - 1.4%) than cushion gas (N_2)
- Hydrodynamic dispersion leads to a notable reduction in H_2 purity and H_2 RF will decrease up to 6% when formation dispersivity is at 10¹ order
- Horizontal trap significantly decreases the H₂ purity and H₂ RF will reduce up to 23% in each cycle, gravity segregation can facilitate the withdrawal of H_2

REFERENCES

Li, Dexuan, and Hamid Emami-Meybodi. "Hydrogen Mixing Dynamics in Depleted Gas **Reservoirs.**" Paper presented at the SPE **Annual Technical Conference and Exhibition**, New Orleans, Louisiana, USA, September 2024.

ACKNOWLEDGMENTS

SUBSURFACE ENERGY RECOVERY AND STORAGE (SERS) oint Industry Partnership (JIP)

John and Willie Leone Family **Department of Energy and** Mineral Engineering