

Introduction

Plasmas have a long-standing analytical history.

Energetic species in a otherwise non-thermal plasma both dissociates species of interest and excites the elemental constituents.

The atomic emission spectrum serves to identify the compounds and ideally its molecular composition with intensity corresponding to concentration.

Miniaturization permits atmospheric pressure operation and battery scale power requirements, thereby permitting mobile field analysis

Materials and Methods

- Miniature spectrometers. Ocean Optics Maya2000 Pro, Stellar Net Black Comet and comparison to a 1/4 meter (SpectraPro 275) spectrograph from Princeton Instruments.
- Two operational modes for ambient monitoring Continuous and Pulsed for pre-collected solid and aerosol samples.
- Spectra acquired under air and Ar atmospheres
- Voltages: 500-1500V, Currents: < 12 mA

Fiaure 2. Micro-hollow alow discharge (MHCD) element: (a) schematic (b)

photograph of nickel

coated alumina disc

Results 1. Development of Spectral Library

- · Identification of compounds depends on associating the plasma emission with a spectral library. This spectral library is comprised of: 1) Atomic emission spectra based on the NIST
- Atomic Spectra Database 2) Diatomic emission spectra based on the LIFBASE database program
- 3) MHGD spectra of known analytes.
- · Figure 3 shows database spectra in which the transition strength is plotted against wavelength. Such discrete (non-overlapped) transitions enable straightforward identification of elements.

Figure 3. A series of atomic emission spectra showing selected transitions based on NIST Atomic Spectra Database

· Plasma decomposition of chemical agents can also produce excited electronic emission from molecular fragments. The model diatomic emission spectra plotted in Fig. 4 were generated using a SRI program that includes vibrationalrotational transitions

Figure 4. Examples of plasma emission spectra from OH (A-X), CH (A-X), CN (A-X), CF (A-X) and NO (A-X) radicals between 200 - 900 nm.

2. Continuous Flow Mode - Vapor Detection

· Gases were analyzed by exposing them to the MHGD. Survey spectra illustrate the MHGD capability to differentiate various analytes: heptane as a representative aliphatic hydrocarbon, nitrobenzene as a surrogate for TNT based explosives, methanol given its similarity to sugar-peroxide based explosives and chlorobenzene as a representative chlorinated aromatic.

Figure 5. Spectra of model analytes tested in continuous operation

3. Pulsed Operation for Detection of Liquids and Solids.

· Powders and liquids were analyzed in a pulsed operational mode by deposition upon on a conducting (metal) disk that served as a surrogate cathode in the MHGD element. Spectral transitions of target compounds for this operational mode are summarized in Table 1

Table1. Summary of signature transition(s) and relative intensities observed for compounds tested in pulsed operation.

Molecule	Published Wavelength	Species/Transition	Relative Intensity	
	(nm)			
Decane	193.3	C (I)	2149	
a representative	247.8	C (I)	555	
alkane for the	386.6	C (I) 2 nd Order	2423	
aliphatic fraction	389.3	CH (B-X)	1656	
with diesel fuel	434	C2 (D-A)	1015	
Sucrose	193.3	C (I)	231	
main ingredient	247.8	C (I)	376	
in TATP	386.6	C (I) 2nd Order	354	
	434	C2 (D-A)	1201	
Potassium Nitrate	226.2	NO (A-X)	2927	
main ingredient	236.3	NO (A-X)	3509	
in gun powder	247.1	NO (A-X)	2734	
	258.7	NO (A-X)	1721	
	315.6	N2 (C-B)	3209	
	337.0	N2 (C-B)	1615	
	356.1	N2 (C-B)	1084	
	357.6	N2 (C-B)	1105	
Nitrohenzene	313.4	N2 (C-B)	2816	
surrogate for TNT	337.0	N2 (C-B)	2286	
	356.1	N2 (C-B)	1641	
	357.6	N2 (C-B)	1455	
	386.6	C (I) 2 nd Order	523	
	434	C2 (D-A)	536	

 In non-thermal plasmas, gas temperature may be inferred from the intensity distribution of diatomic emission vibrational-rotational band intensities, as illustrated here by fitting the experimental emission intensity from NO to a

Figure 6. A spectral simulation of NO (A-X) vibrational bands numerical simulation using compared to observed MHGD spectrum to infer plasma temperature (~ 1300°C).

Conclusions

the LIFBASE program.

· A MHGD unit was successfully developed and applied to the detection of several chemicals related to explosives at trace levels as listed in Table 1. Continuous and pulsed operational modes for analyzing gases, liquids and solids were demonstrated at atmospheric pressure Table 2 Detection limit for diverse analyte

,									
Analyte	Heptane	Nitrobenzene	NH3	Chlorobenzene	Benzylamine	Methanol			
			(aq.)		,				
Stimated Detection Jimit	2.7	0.01	7.9	0.4	0.03	3.4			

- · A spectral signature database has been created based on atomic and molecular electronic emission for selected agents within the plasma environment.
- · For future alternative plasma configurations will be tested for analytical utility and comparative spectral algorithms will be developed towards compound identification/classification.

Literature Cited

- Wagatsuma,, Kazuaki, "Emission characteristic of mixed gas plasmas in low-pressure glow discharges", Spectrochimica Acta Part B 56 (2001) 465-486.
- Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P., "Atmospheric pressure plasmas: A review", Spectrochimica Acta Part B 61 (2006) 2-30
- Laux, C. O., Spence, T. G., Kruger, C. H., Zare, R. N., "Optical diagnostics of atmospheric pressure air plasmas", Plasma Sources Sci. Technol. 12 (2003) 125-138.
- Stark, R. H., Schoenbach, K. H., "Direct current high-pressure glow discharge", Journal of Applied Physics, 85 (1999) 2075-2080.

Acknowledgments

We thank Bangzhi Liu and Bill Drawl (MRI, Penn State University) for the assistance to fabricate MHGD elements by Physical Vapor Deposition. Funding for this project was provided by NAVY under the contract STTR Award No. N00014-06-M-0300

For Further Information

Please contact <u>ruv12@psu.edu</u>. More information on this and related projects can be obtained at www.eme.psu.edu/faculty/vanderwal.html.