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1. Definition

Relat bility (k,) is defined the ratio of effi t'. This rescarch aims to develop a tool which can infer and * Distribution of reconstructed hydraulic properties (¢ and " This study indicates that physics insisted data driven
clative peiticabliity (kr) 15 GEHHEE db e Talio O CHEEHve upscale relative permeability function at field scale through k,) using DCGAN has converged with distribution of these y phy | |
permeability of a partlnular flmd at a p.artlcular saturation to absolute integrating both pore scale simulation and field scale static parameters in training images. approach (C-DCGAN) can reconstruct porous media while
permeability of that fluid at total saturation. geological properties (pOI’OSity, permeability and pore S1Z€ combining both pore scale (training images) and field scale

distribution); add an extra heterogeneity fluid transport model . . , - S
_ Kk A _ kesr . ) . ST , £  Conditional DCGAN has ability to interpolate the structure features (reservoir characterization features)
Qs = OP, k, = (k,) besides reservoir characterization model; extrapolate o , S
ML k : of porous media given an unseen input distribution of . .
sparse and expensive data (k,) from large volume of data (¢ . . L. . " This study introduces a new workflow to successfully
* k., is an important parameter for controlling CO2 injection volume and k) at field scale hydraulic properties in training images (Fig.4 & 5). : : . : : :
e . abs ' predict relative permeability given only static Geological
and plume distribution during the process of CCS. ] b .
: : : L. : . eatures such as porosity etc.
2. Laboratory measurements of k, Methodology * Given multiple spatial realizations of porosity, permeability b y
and pore size distribution near wellbore, generator extracted = This studv introduces a more accurate characterization of
 Special core analysis (SCAL) is time consuming and expensive Physics informed conditional deep convolutional generative 4

| . . from trained condition DCGAN will be able to generate
adversarial n.etworlfs (C-DCGAN) can build | the l?ndge multiple realizations of k,. curves in each grid block (Fig.6)
between static variables (¢ etc.) and dynamic variables Cenerator and Discriminator Loss During Training

(k,, x etc.) by reconstructing porous media that combine -
information from both pore scale (training 1images) and field
scale features (e.g. well logs). Below 1s the workflow:

phase flowing behavior in reservoir simulation to support

* Core samples are only limited representation of subsurface L :
future reservoir simulation development
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Fig. 3. Training history of conditional DCGAN Training image ¢ = 0.2
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Fig. 1. Architecture of GAN - Jakub and Valdimir, 2020 3. Mohammad, R.S., Tareen, M. . ., Mengel, A. et al. Simulation study of

Simulated Relative permeability curve

(k, vs S,,,) through stokes flow simulation C0; Invasion percolation

relative permeability and the dynamic capillarity of waterflooding in

The generation process of conditional DCGAN (fig.2) 1s
& P (tig.2) tight oil reservoirs. J Petrol Explor Prod Technol 10, 1891-1896 (2020).

4. Limitations controlled by both physical vector y: {¢, kyps, D ... }Jand Gaussian

noise z. The minmax cross entropy loss function will be rewritten

* Both laboratory measurement and numerical simulation Acknowledgements

of relative permeability require availability of cores plugs
or their micro-CT images, which only represent a small E,(log D(x[y)) + E,(logl — D(x* |y))
portion of subsurface information.
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* Reservoir simulation typically considers K, function as
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homogeneous for whole field scale whereas assuming P ),

heterogeneous distribution of geological properties such ®| - - .0 ' 4
as P OI'OSity and permeabﬂity' Inconsistency between i_ : Fig. 5. Reconstructed porous media image conditioned to porosity input
transport properties and static geological properties limit @ Galanet

the accuracy of reservoir model. i o

Fig. 2. Architecture of GAN - Jakub and Valdimir, 2020
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