
Introduction

Methodology

• Distribution of reconstructed hydraulic properties (𝜙𝜙 and 
𝑘𝑘𝑟𝑟) using DCGAN has converged with distribution of these 
parameters in training images.

• Conditional DCGAN has ability to interpolate the structure 
of porous media given an unseen input distribution of 
hydraulic properties in training images (Fig.4 & 5). 

• Given multiple spatial realizations of porosity, permeability 
and pore size distribution near wellbore, generator extracted 
from trained condition DCGAN will be able to generate 
multiple realizations of 𝑘𝑘𝑟𝑟 curves in each grid block (Fig.6)

Results Conclusion

 This study indicates that physics insisted data driven
approach (C-DCGAN) can reconstruct porous media while
combining both pore scale (training images) and field scale
features (reservoir characterization features)

 This study introduces a new workflow to successfully
predict relative permeability given only static Geological
features such as porosity etc.

 This study introduces a more accurate characterization of
phase flowing behavior in reservoir simulation to support
future reservoir simulation development
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Upscaling relative permeability from pore scale to field scale using conditional deep 
convolutional Generative Adversarial Networks (GANs)

• This research aims to develop a tool which can infer and
upscale relative permeability function at field scale through
integrating both pore scale simulation and field scale static
geological properties (porosity, permeability and pore size
distribution); add an extra heterogeneity fluid transport model
(𝑘𝑘𝑟𝑟 ) besides reservoir characterization model; extrapolate
sparse and expensive data (𝑘𝑘𝑟𝑟) from large volume of data (𝜙𝜙
and 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎) at field scale.

Objectives

2. Laboratory measurements of 𝒌𝒌𝒓𝒓

• Special core analysis (SCAL) is time consuming and expensive

• Core samples are only limited representation of subsurface

1. Definition
 Relative permeability ( 𝑘𝑘𝑟𝑟 ) is defined as the ratio of effective

permeability of a particular fluid at a particular saturation to absolute
permeability of that fluid at total saturation.

𝑄𝑄𝑎𝑎 =
𝑘𝑘𝑘𝑘𝑟𝑟𝐴𝐴
𝜇𝜇𝜇𝜇

𝛿𝛿𝛿𝛿, 𝑘𝑘𝑟𝑟 =
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘

• 𝑘𝑘𝑟𝑟 is an important parameter for controlling CO2 injection volume
and plume distribution during the process of CCS.

Core logging Laboratory measurement of relative permeability

3. Numerical Simulation of 𝒌𝒌𝒓𝒓

Micro CT image Pore network model - Dong and Blunt, 2009

Simulated Relative permeability curve 
(𝒌𝒌𝒓𝒓 𝒗𝒗𝒗𝒗 𝑺𝑺𝒏𝒏𝒏𝒏) through stokes flow simulation 𝑪𝑪𝑶𝑶𝟐𝟐 Invasion percolation

Physics informed conditional deep convolutional generative
adversarial networks (C-DCGAN) can build the bridge
between static variables (𝜙𝜙 𝑒𝑒𝑒𝑒𝑒𝑒.) and dynamic variables
(𝑘𝑘𝑟𝑟 ,𝜒𝜒 𝑒𝑒𝑒𝑒𝑒𝑒.) by reconstructing porous media that combine
information from both pore scale (training images) and field
scale features (e.g. well logs). Below is the workflow:

• Both laboratory measurement and numerical simulation
of relative permeability require availability of cores plugs
or their micro-CT images, which only represent a small
portion of subsurface information.

• Reservoir simulation typically considers 𝐾𝐾𝑟𝑟 function as
homogeneous for whole field scale whereas assuming
heterogeneous distribution of geological properties such
as porosity and permeability. Inconsistency between
transport properties and static geological properties limit
the accuracy of reservoir model.

4. Limitations

Geology Variables Transport Variables

Porous media

☓

GAN Flow 
simulation

Generative adversarial network (fig.1) is consisted by 2 deep
convolutional neural networks: Generator (G) and discriminator
(D). They are competing to minmax cross entropy loss function:

𝐸𝐸𝑥𝑥 log𝐷𝐷 𝑥𝑥 + 𝐸𝐸𝑧𝑧 𝑙𝑙𝑙𝑙𝑙𝑙1 − 𝐷𝐷 𝑥𝑥∗

𝑥𝑥: 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑡𝑡𝑖𝑖𝑡𝑡𝑙𝑙𝑒𝑒𝑖𝑖. 𝑥𝑥∗: 𝑓𝑓𝑡𝑡𝑘𝑘𝑒𝑒 𝑡𝑡𝑖𝑖𝑡𝑡𝑙𝑙𝑒𝑒𝑖𝑖,𝐺𝐺(𝑧𝑧)

The generation process of conditional DCGAN (fig.2) is
controlled by both physical vector 𝑦𝑦: 𝜙𝜙, 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 ,𝐷𝐷… and Gaussian
noise 𝑧𝑧. The minmax cross entropy loss function will be rewritten
in below form:

𝐸𝐸𝑥𝑥 log𝐷𝐷 𝑥𝑥|𝑦𝑦 + 𝐸𝐸𝑧𝑧 𝑙𝑙𝑙𝑙𝑙𝑙1 − 𝐷𝐷 𝑥𝑥∗ |𝑦𝑦

𝑥𝑥: 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑡𝑡𝑖𝑖𝑡𝑡𝑙𝑙𝑒𝑒𝑖𝑖. 𝑥𝑥∗:𝑓𝑓𝑡𝑡𝑘𝑘𝑒𝑒 𝑡𝑡𝑖𝑖𝑡𝑡𝑙𝑙𝑒𝑒𝑖𝑖,𝐺𝐺(𝑧𝑧|𝑦𝑦)

Fig. 1. Architecture of GAN - Jakub and Valdimir, 2020

Fig. 2. Architecture of GAN - Jakub and Valdimir, 2020

Fig. 4  Reconstructed porous media conditioned to porosity input

Fig. 5. Reconstructed porous media image conditioned to porosity input

Fig. 3. Training history of conditional DCGAN
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Fig. 6. Relative permeability upscaling according to porosity 
perturbation to DCGAN

Training image 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 Reconstructed image 𝝓𝝓 = 𝟎𝟎.𝟏𝟏𝟏𝟏

𝝓𝝓,𝒌𝒌𝒂𝒂𝒂𝒂𝒗𝒗,𝝌𝝌𝒗𝒗, grain size 
distribution, which can be 
inferred from well log data

Relative permeability, 
phase connectivity etc.
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