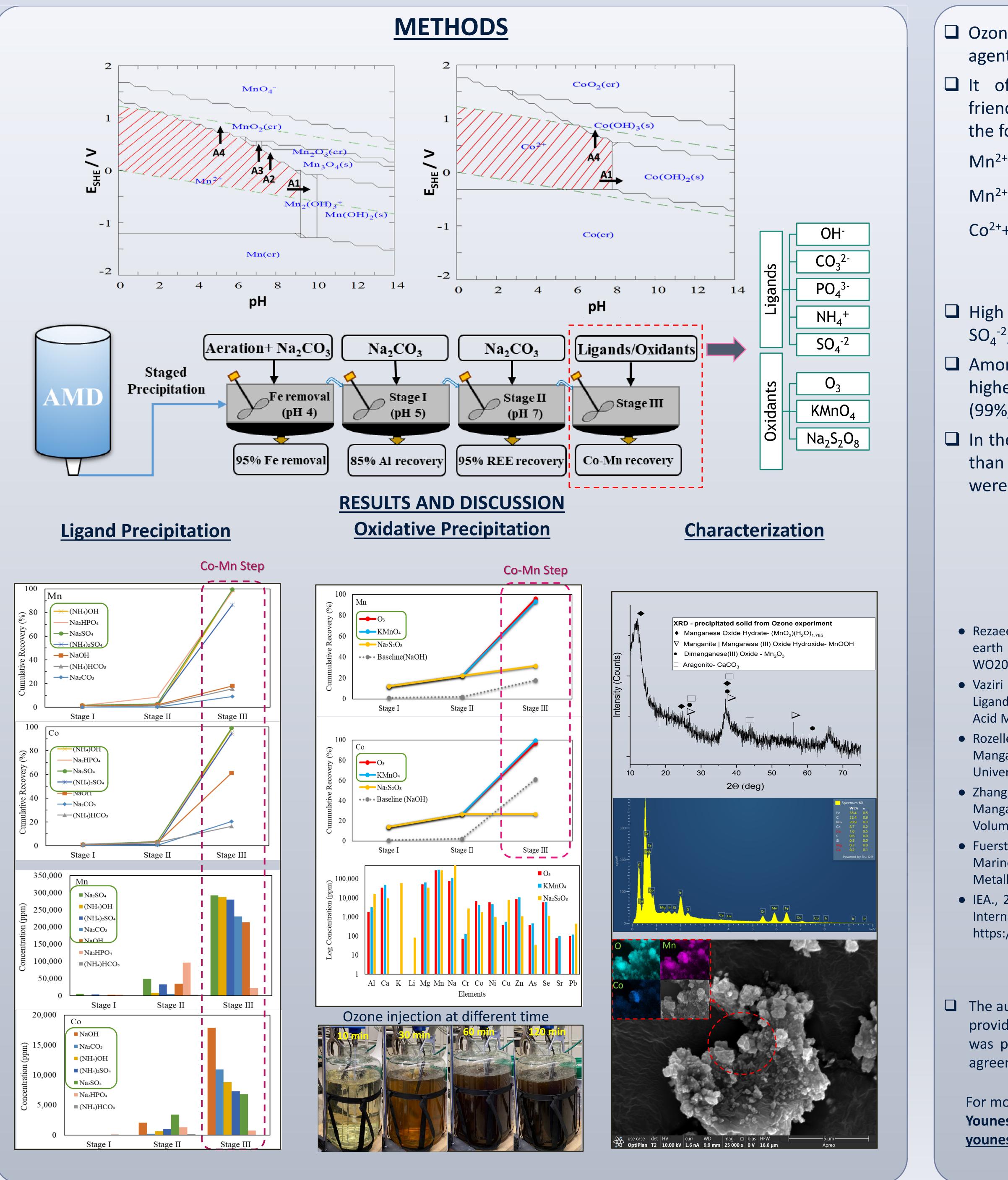

PennState

John and Willie Leone Family Department of Energy and Mineral Engineering

- Cobalt (Co) and Manganese (Mn) are listed as critical elements by the U.S. Department of Interior.
- Major applications: rechargeable batteries, alloys, electric components, steel industry, chemical industry, ink, medicine.
- □ U.S. is currently 100% and 78% reliance on foreign sources of Mn and Co, respectively.
- Secondary resources:

- Acid Mine Drainage (AMD): $FeS_2 + \frac{7}{2}O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$ $Fe^{2+} + \frac{1}{4}O_2 + H^+ \rightarrow Fe^{3+} + \frac{1}{2}H_2O$ $FeS_2 + 14 Fe^{3+} + 8 H_2O \rightarrow 15 Fe^{2+} + 2 SO_4^{2-} + 16 H^+$
- Pennsylvania has 5,500 miles of AMD streams
- AMD in the Appalachian region has been found to contain an elevated content of critical elements such as REEs, Al, Co, and Mn.
- □ The neutralization of AMD streams prior to discharge to the environment is mandatory under the Clean Water Act (U.S.C §1251).
- Co and Mn do not precipitate at circumneutral pH.
- Recovery of these elements from AMD while treating to address the environmental concerns improves the sustainability of the process.

OBJECTIVE


To investigate the effect of various ligands and oxidation agents on precipitation of Co-Mn from low concentration solutions, and develop a process for recovery of these elements from AMD

Source	Elemental concentration (ppm)								
	AI	Fe	Mg	Mn	Со	Ni	Cu	Zn	TREE
AMD	45.6	4.7	399.8	41.8	0.9	1.6	0.1	3.1	0.5
Sludge	90550	25725	104621	49096	1325	2371	607	5145	1143

MATERIALS

Precipitation of Co-Mn from Low Concentration Solutions using Various Ligands and a Chemical-Free Process, A Case Study of Acid Mine Drainage (AMD)

Younes Shekarian, Mohammad Rezaee, Sarma Pisupati

Center for Critical Minerals (C²M)

• Ozone (O3) is one of the most effective oxidizing agents with an oxidizing potential of 2.07.

□ It offers a chemical-free and environmentally friendly oxidative precipitation of Co-Mn through the following precipitation reaction paths:

(2) $Mn^{2+}+O_3+H_2O=MnO_2+2H^++O_2$


 $Co^{2+}+1/2O_3+3/2H_2O=CoOOH+2H^++1/2O_2$ (3)

CONCLUSIONS

 \Box High recovery value for Co-Mn achieved by NH₄⁺, SO_4^{-2} , and PO_4^{3-} ligands at pH 9.

• Among the oxidation agents, ozone resulted in the highest recovery/grade for Mn (98%/29%) and Co (99%/0.8%).

In the proposed staged precipitation process, more than 95% of Co-Mn, 95% of REE, and 85% of Al were recovered.

REFERENCES

• Rezaee, M., Vaziri Hassas, B., Pisupati, S.V., 2021. Recovery of rare acidic solutions, elements from U.S. patent, WO2021155224A1

• Vaziri Hassas, B., Rezaee, M., Pisupati, S.V., 2021. Effect of Various Ligands on The Selective Precipitation of Rare Earth Elements from Acid Mine Drainage, Chemosphere, 130684.

• Rozelle, P., Mamula, N., Arnold., et al., 2021, Secondary Cobalt and Manganese Resources in Pennsylvania: The Pennsylvania State University Center for Critical Minerals.

• Zhang, W., Cheng, C.H., 2007. Manganese metallurgy review. Part II: Manganese separation and recovery from solution, Hydrometallurgy, Volume 89, Issues 3–4, Pages 160-177.

• Fuerstenau, D.W & HAN, K.N., 1983. Metallurgy and Processing of Marine Manganese Nodules, Mineral Processing and Extractive Metallurgy Review, 1:1-2, 1-83, DOI: 10.1080/08827508308952589.

• IEA., 2021, The Role of Critical Minerals in Clean Energy Transition, International Energy Accessed Agency, https://iea.blob.core.windows.net/

ACKNOWLEDGEMENTS

 The authors are grateful to Penn State EMS Energy Institute for providing experimental facilities. Partial funding for this study was provided by Leonardo Technologies, Inc. (under USDOE agreement #DE-FE0022594)

For more information, please contact: **Younes Shekarian** younes.Shekarian@psu.edu

Dr. Mohammad Rezaee m.rezaee@psu.edu